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LETTER TO THE EDITOR 

Statistical mechanics of the knapsack problem 

E Korutchevai, M Opper md B L6pez 
Physikalisches Lnstitut der Universit2t Wiinburg, Am Hubland. 97074 WlirzbLburg, Germany 

Received 22 July 1994 

Abstract The hapsack problem is an NP-complete mmbinatorial optimization problem with 
inequality constnints. Using the replica method of statistical physics, we study the space of its 
solutions for a large problem sire. It turns out that this problem is closely related to the theory 
of the binary percepkon. 

Statistical physics provides interesting tools for the analysis of the complex energy 
landscapes which appear in combinatorial optimization problems. Based on the replica 
approach of disorder physics, the ground state properties of models l i e  the travelling 
salesman problem [l], the matching problem [Z] and the graph partitioning problem [3 ]  
have been investigated analytically in recent years. In these cases, the cost functions which 
have to be optimized, can be mapped onto classical spin Hamiltonians with competing 
interactions, weU known from spin-glass physics. 

In this letter, we study the so-called ‘knapsack problem’, which maps onto a rather 
different type of statistical physics model. Here, the cost function is much simpler than 
in the aforementioned cases, and does not lead to any frustration effects. The problem 
becomes complex by an additional set of inequality constraints which have to be satisfied 
by the optimal solution. Like many other combinatorial optimization problems, ‘knapsack‘ 
belongs to the NP-complete class [6]. Thus, one expects that in the worst case, optimal 
solutions require a number of computational time steps that increase exponentially with the 
size of the problem. Nevertheless, solutions that are close to the optimum can be found in 
polynomial time. Recently, an algorithm, developed by Ohlsson, Peterson and Soderberg 
[7], which is based on mean-field (MF) annealing, was found to work very efficiently for 
large, random knapsack problems. 

Inspired by this work we analyse the knapsack model for large problem sizes within the 
statistical mechanics framework. We show the close correspondence of the present problem 
to the binary perceptron model that was introduced by Gardner and Derrida [4] and solved 
by Krauth and Mbzard [5]. The knapsack problem is defined in the following way: 

One has N items i with utilities ci and loads uki. The aim is Yo fill a ‘knapsack’ in such 
a way that the total utility 

’. 
U ( S )  = p s i  

i = l  
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is maximized subject to a set of K additional constraints: 

me si binary decision variables that take the values t1 when the item i goes into the 
knapsack and 0 otherwise. The variables nri. ci and bk are real and non-negative. To get 
an insight into the typical behaviour of the problem. we will investigate the case where the 
aki are independent random numbers equally distributed in the unit interval. For simplicity, 
we will set ci equal to the constant $. In this case the utility is proportional to the number 
of items used. Finally, we also specify the variables bk fixed to a common value b. 

We are interested in the scaling of the problem, when N + 60. An interesting limit is 
obtained when K, the number of constraints scales like N ,  i.e., when we set K = 01,  N ,  with 
(I. finite. It is convenient to convert the decision variables s, = ( I ,  0) into spin variables 
ii = ( I ,  -l), using the transformation i = 2(s - i). Likewise, we set 

(3) I 
a k i  = + b i  

where the random part fk i  has zero mean and variance U* = A. Hence, up to a constant. 
the utility 

U=-+-C^ N l N  
Si 

4 4 i=l 

is given by the total 'magnetization' of the spins if, and the inequalities (2) read 

(4 )  

For finite a = K I N ,  we assume that for the optimal configuration the are only weakly 
correlated to the aii, so that for large N ,  xi  &[& is of order a. Thus, in order to satisfy 
(3, large magnetizations of O ( N )  must be balanced by the remaining terms of the same 
order. Assuming b of O ( N ) ,  we get the condition b - ( N / 4 ) ,  so that the 
optimal utility satisfies 

E,",, i i  

Uopl 2-b. N .  (6) 

For b >> N / 4 ,  the inequalities ( 5 )  allow for a large positive magnetization, which 
corresponds to a solution where the knapsack can be filled with very many items. On 
the other hand, for b (<. N / 4 ,  the magnetization is negative, and only a few items are 
in the knapsack. In such extreme cases often good solutions to the optimization problem 
can be found from heuristics [7]. In the following, we will restrict ourselves to b = N / 4 ,  
where about half of the items go into the knapsack, corresponding to zero magnetization. 
This is also the most complex case from the optimization point of view. A more detailed 
investigation of the parameter space will be given in a forthcoming paper. 

Hence, for b = N / 4 ,  we set U + ( N j 4 )  + ( f i / 4 ) M ,  where 



Letter to the Editor L647 

describes the fluctuations of the magnetization around 0. 
In the following, we calculate the v% correction to the large N behaviour (6) of the 

utility using the Replica-method. For this problem it is convenient to work within the 
replica-symmetric (RS) scheme of the microcanonical ensemble. 

In the microcanonical ensemble the averaged entropy of allowed configurations is 
defined via: 

where the replica trick was utilized in the last equality. Here, N(M) is the number of 
configurations {$] which have a fixed M, implying also a fixed utility U. The quenched 
average ((. . .)) is taken over the distribution of the load variables ski. In this formalism, the 
optimal utiZity U,,, corresponds to the highest value of M, for which S(M) is still positive. 
Explicitly, we have 

In (9) the product of the @-functions accounts for the inequalities (2). Similar types of 
expressions appear in the problem of learning in neural networks of perceptron type. There, 
-& would correspond to an input pattem, which must be learnt by adjusting synaptic 
weights i j ,  such that K local fields - ELl &ii i / f l  are larger than some threshold. For 
the knapsack problem, this threshold contains the variable M, together with a random 
contribution and is not restricted to positive values. 

The explicit evaluation of the entropy strongly resembles the corresponding calculation 
for the perceptron, and will only be sketched. To perform the quenched average, we use 
the fact that the variables uz = cL,(1 + ? r ) f k j / f i ,  are jointly Gaussian diskibuted for 
N + 00, satisfying 

Here, the order parameters 

measure the overlap between two random vectors that are consistent with all inequality 
constraints. 

Assuming replica-symmetry, i.e. qnb = q ,  the Gaussian fields U: can be constructed via 

U; = U ( f i t k  + G z ; )  (12) 
where t i ,  zt  are independent Gaussian random variables with zero mean and unit variance. 
Obviously, this ansatz satisfies the conditions (IO). Finally, the trace Trj, is c a n i d  out 
using the saddle-point method. Then, the entropy is found by extremizing the expression 
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with respect to q and 4, where 4 is the order parameter conjugate to q.  As usual, the 
Gaussian measure DE is 

dr exp ( - tz / /z)  

4 5  
Dr 

and H ( x )  is defined as 

H ( n ) =  Dt .  l* 
~~~ ~~~ ~~~ ~~~~~ ~ ~~~~~~~~ ~~ 

Due to the 
At the maximal M = MopL, the number N(M) of configurations which satisfy all 

constraints is no longer exponential in  N and the entropy vanishes. Solving the order 
parameter equations 

scaling of (7): no order parameter conjugate to M isrequired [4]. 

-1.0- 

-1.5 

together with the zero entropy condition S(Mq) = 0, we obtain Mopt as a function of 
a = K / N .  The result is  displayed in figure I ,  together with a simple upper bound obtained 
from the annealed approximation S,.(M) = (l/N)ln((N(M))), It becomes clear that by 
increasing the number of constraints (i.e. for a greater a), more and more of them must be 
satisfied trivially by setting ii = -1, or si = 0, i.e. by leaving items out of the knapsack. 
In this case, M becomes more and more negative and the total utility decreases. 

H N=100 

e N=750 
- 

. I . .  , . . I . ,  . . . . , . , . . I 

Figure 1. Optimal values Mop,. The full line represents the replica mull and the dashed line is 
obtained from the annealed approximarion. The WO dots al (I = I are t&en from simulations 
of [SI with N = 100 and N = 750 respectively. 
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Similar to the binary perceptron problem [5,4], the zero entropy condition does not 
correspond to the limit where the overlap q equals I. In fact, from (13), it can be shown 
that for q + I ,  S + -CO. The critical overlap qc(M,,,) is always below 1 (see figiue 2). 
This means, that two solutions with utilities close to the optimum (within a relative deviation 
much less than O(I/v%)) typically differ in a macroscopic number O(N) of bits. As 01, 

the relative number of constraints increases, qc decreases. Foro! --f 00, two almost optimal 
solutions are uncorrelated. 

I I I I l 

Figure 2. Overlap qc of almost optimal solutions. 

Our results are based on the assumption of replica symmetry. To check its validity, 
the stability of the RS-SOhtiOn from the matrix of quadratic fluctuations of 4.p [SI must be 
calculated. This will be left to a forthcoming paper. Nevertheless, by the similarity of the 
knapsack problem with the binary perceptron, we strongly expect that replica symmetry is 
exact on the zero entropy line. In fact, for the binary perceptron, a careful analysis of the 
1-step replica symmetry breaking solution [5] within a canonical ensemble (allowing for 
a violation of the inequality constraints) yields agreement with the RS calculations of the 
microcanonical ensemble [IO]. 

We have compared our analytical result for Mopf with data [SI obtained from the MF- 
algorithm of [7] for 01 = 1 (see the square and the diamond in figure 1). The difference A M  
of the data from the optimal value MDpt slightly increase with N .  But the relative deviation 
from the maximal utility AU/U = A M / ( f l +  Mq,) is remarkably small and decreases 
from 0.055 for N = 100 to A U / U  = 0.029 at N = 750. 

The validity of replica symmetry might give an explanation, why a MF-algorithm works 
so well for the knapsack problem. For such algorithm, the constraints of the problem are 
incorporated by a Hamiltonian that penalizes their violation. As for a simulated annealing 
method, the model is treated at finite temperature, which is slowly lowered to find nearly 
optimal solutions. However, for the mean-field algorithm, the temperature is not simulated 
by a stochastic process, but one derives approximate, deterministic equations [7] for the 
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thermal averages of the decision variables {si). An exact approach to such a type of mean- 
field theory has been developed for the Shemngton Kirkpahick model of spin glasses by 
Thouless, Anderson and Palmer [I 11. This so called TAP-approach and its relation 'to the 
replica theory has been analysed [12] in great detail. Assuming that a similar type of 
physics holds for the present problem, we suggest the following qualitative picture: When 
replica symmetry is exact, the phase space consists of a single ergodic component and 
we can expect that mean-field equations have only a single solution, which may be found 
without too many problems. The situation is worse for a broken replica symmetry. Here, 
exponentially (in N) many solutions would occur, and it would be hard to find one with a 
low free energy. 

EK warmly thanks the Alexander von Humboldt Foundation for financial support. We thank 
the authors of (71 for providing us with data from their MF-algorithm. This work is part of 
Contract F23 with the Bulgarian Scientific Foundation. 
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